\(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx\) [406]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 116 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {8 a^2 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d} \]

[Out]

2/5*cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d+8/5*a^2*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)
)^(1/2)+2/5*a*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {4349, 3897, 3894, 3889} \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {8 a^2 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}{5 d} \]

[In]

Int[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(8*a^2*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Se
c[c + d*x]]*Sin[c + d*x])/(5*d) + (2*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(5*d)

Rule 3889

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-2*a*(Co
t[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 3894

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*m)), x] + Dist[b*((2*m - 1)/(d*m)), Int[(a + b
*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0
] && EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rule 3897

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + 1))), x] + Dist[a*(m/(b*d*(m + 1))), Int[(a + b*C
sc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ
[m + n + 1, 0] &&  !LtQ[m, -2^(-1)]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {1}{5} \left (3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {1}{5} \left (4 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {8 a^2 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.52 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {a \sqrt {\cos (c+d x)} (13+6 \cos (c+d x)+\cos (2 (c+d x))) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{5 d} \]

[In]

Integrate[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(a*Sqrt[Cos[c + d*x]]*(13 + 6*Cos[c + d*x] + Cos[2*(c + d*x)])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(5
*d)

Maple [A] (verified)

Time = 1.74 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.53

method result size
default \(-\frac {2 a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}\, \left (\cos \left (d x +c \right )^{3}+2 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )-6\right ) \csc \left (d x +c \right )}{5 d}\) \(61\)

[In]

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/5/d*a*(a*(1+sec(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)*(cos(d*x+c)^3+2*cos(d*x+c)^2+3*cos(d*x+c)-6)*csc(d*x+c)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.62 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {2 \, {\left (a \cos \left (d x + c\right )^{2} + 3 \, a \cos \left (d x + c\right ) + 6 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{5 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

2/5*(a*cos(d*x + c)^2 + 3*a*cos(d*x + c) + 6*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin
(d*x + c)/(d*cos(d*x + c) + d)

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 210 vs. \(2 (98) = 196\).

Time = 0.36 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.81 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {\sqrt {2} {\left (20 \, a \cos \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, a \cos \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) - 20 \, a \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) - 5 \, a \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 2 \, a \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, a \sin \left (\frac {3}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 20 \, a \sin \left (\frac {1}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right )\right )} \sqrt {a}}{20 \, d} \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/20*sqrt(2)*(20*a*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) + 5*a*cos
(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 20*a*cos(5/2*d*x + 5/2*c)*sin
(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*a*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d
*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 2*a*sin(5/2*d*x + 5/2*c) + 5*a*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos
(5/2*d*x + 5/2*c))) + 20*a*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*sqrt(a)/d

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\int {\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^(3/2), x)